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I. INTRODUCTION

Walsh functionsl-s are binary-valued, periodic functions which
form a complete orthogonal set on the interval [0,1). Because their
pulse-like character is compatible with the operation of digital com-
puters and processors, much recent interest has been generated in the
study of the properties and applications of Walsh functions, The
study of the characteristics and capabilities of Walsh functions at
Syracuse University began in 1972, Past accomplishments include the
formulation of a sampling theorem for sequency-limited waveforms,
Walsh-transform analysis of discrete dyadic-invariant systems,7 time-~
domain analysis of dyadic-invariant systems,s a critical study of the
radiation characteristics of a linear array of short dipoles excited
by Walsh-shaped currents,9 and a clarification of the interrelationships
and transconversion procedures of Paley, Hadamard, and Walsh functions.lo

The emphasis of the present grant was directed toward developing
some particularly useful applications of Walsh functions and Walsh
transforms. Many possible areas of application were examined. This
report summarizes the more significant results obtained under this grant.
Three new areas of application have been identified. They are: solution
of difference equations; multidimensional signal processing on a real-time
basis; and noise-error determination of combinational circuits. In addi-
tion, a simple algorithm for obtaining the sequency vector of high-order
Hadamard transform matrices has been developed. These research accomplish-
ments, together with a list of publications, a list of professional
personnel, and the reprints of published papers, comprise this final tech-

nical report.
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II. RESEARCH ACCOMPLISHMENTS

? In this section we summarize the more significant research results

obtained under this grant.

1, Walsh-transform solution of difference equations - Dyadic opera-

T i tions are fundamental to Walsh functions and their applications. How-

ever, dyadic-invariant systems, though mathematically and conceptually
interesting, do not correspond to real-world physical systems. In
order for Walsh functions and Walsh transforms to be more useful and
more effective in signal processing and other applications, methods
for their usage in analyzing nondyadic time-invariant systems must be
found, It is essential that the Walsh transforms for time-shifted

functions be related to those before the shift so that important opera-

tions such as time-delay simulation, convolution, and correlation can
be dealt with. We have obtained a relation between the Walsh transforms
of a function subject to dyadic and nondyadic time displacements. By
defining spectrum-conversion matrices, we have demonstrated the ease of

using Walsh transformation to solve linear difference equations.

2. Development of an algorithm for sequency ordering of Hadamard
functions - Hadamard functions, like Walsh functions, are binary-valued
functions which form a complete orthonormal set on [0,1). However,
unlike Walsh functions, the order h of a Hadamard function H(h,t) is
not equal to its sequency, which is determined from the inverse Gray

code of the bit-reverse binary representation of hlo. In signal-

we
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processing work it is desirable that the rows of a Hadamard matrix be
rearranged in increasing sequency, resulting in a Walsh matrix. Recur-
sive relations for sequency vectors of consecutive orders have been
obtained, from which an algorithm can be devised to generate the sequency

vector of a Hadamard matrix.

3, Development of a general two-parameter orthogonal transformation
matrix -- A procedure frequently used in two-dimensional image processing
is to scan the image sequentially in time, converting it into a one-
dimensional digital signal and then processing it in blocks in the trans-
form domain. However, this conversion alters the relative positions
of the image elements and hence changes the character of the signal. We

have introduced a two-parameter generalized transformation matrix which

reduces to the Fourier and Hadamard matrices under special conditioms,
It has been shown that the new trnasformation matrix with appropriate
parameters will preserve the proper relationship in the transform do- ‘I

main before and after scanning.

4, Analysis of the stochastic behavior of digital combinational
circuits -- The determination of the output behavior of digital systems qr

in response to stochastic inputs has been a formidable task because it

cannot be handled by the usual linear algebra and calculus. Logical
algebra and an associated calculus that is digital in nature are re-
quired. We have found Walsh functions to be relevant in this connec-

tion. An n-input Boolean function is expressed as a Walsh series which

-




facilitates the analysis of the statistical error at the output of

a digital combinational circuit due to a signal corrupted by noise.

We think this work represents a very significant contribution to the

 T——————

i analysis of the stochastic behavior of digital combinational circuits.

Further work on this technique will undoubtedly lead to new results

for sequential circuits, :
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ITI. LIST OF PUBLICATIONS

Besides the technical report on 'Paley, Hadamard, and Walsh Func-
tions: Interrelationships and Transconversions,"lo the following articles
relevant to this grant were puhlished during the epriod covered by this

final report.

G e

1, "Time-Shift Theorems for Walsh Transforms and Solution of Difference
Equations," by D.K., Cheng and J.J. Liu, IEEE Transactions on

Electromagnetic Compatibility, vol. EMC-18, pp. 83-87, May 1976.

Abstract - Several time-shift theorems for Walsh transforms of func-
tions subject to nondyadic as well as dyadic time displacements are
presented. Spectrum-conversion matrices are defined and a relation
between a function with an ordinary shift and that with a dyadic
shift is established. Procedures for solving difference equations
by Walsh transformation are given,

2, "An Algorithm for Sequency Ordering of Hadamard Functioms," by
D.K. Cheng and J.J, Liu, IEEE Transactions on Computers, vol.

C-26, pp. 308-309, March 1977.

Abstract - A simple algorithm is developed for obvtaining the

sequency vector of high-order Hadamard transform matrices without
the need for converting the order of individual Hadamard functions

to sequency.

3. "A Generalized Orthogonal Transformation Matrix," by D.K. Cheng
and J.J. Liu, IEEE Transactions on Computers, vol, C-28, pp. 1l47-
150, February 1979.

Abstract - A procedure 1s described for generating a twc-parameter
orthogonal transformation matrix which reduces to the Fourier and
Hadamard transformation matrices under special conditions. This
generalized transformation matrix is particularly useful for
multidimensional signal processing on a real-time basis because

it preserves a proper relationship in the transform domain,

4, "Noise-Error Determination of Combinational Circuits by Walsh Func-
tions," by A.U, Shankar and D.K, Cheng," IEEE Transactions on
Elactromagnetic Compatibility, vol. EMC-21, pp. 146-152, May 1979,

g Abstract - The stochastic behavior of digital combinational circuits
‘ 15 analyzed by the use of Walsh functions., An n-input Boolean function

is represented as a Walsh series and the error caused by noise is
measured in terms of a distance which 1s the fraction of time that the
system output due to noise-corrupted signal differs from that due to
signal alone. It is shown that the error can be expressed as the sum
of two parts: one part depends only on noise statistics, and the other
on both signal and noise. Some interesting properties of both parts
are discussed and typical examples are given,

aBa
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Dissertation title: "Generalized Walsh Functions - Theory
and Applications in Digital Systems."
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Error Determination by Walsh Functions."
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Time-Shift Theorems for Walsh Transforms and Solution of
Difference Equations

DAVID K. CHENG anp JAMES J. LIU

Abstract—Several time-shift theorems for Walsh transforms of
functions subject to nondyadic as well as dyadic time displacements are
presented. Spectrum-conversion matrices are defined and a relation
between a function with an ordinary shift and that with a dyadic shift
is established. Procedures for solving difference equations by Walsh
transformation are given.

INTRODUCTION

It is well known that a square-integrable function or a periodic
function can be approximated in the least integrated-squared-
error sense by a linear combination of orthogonal basis functions.
When the set of basis functions is “‘complete,” the original
function can be approximated in-the-iiean with an arbitrarily
small error by a sufficiently large number of terms. The most
commonly used complete orthogonal basis functions in science
and engineering are, without a doubt, sinusoidai functions. They
lead to Fourier series and Fourier integrals which are of funda-

Manuscript received March 18, 1975. This work was supported in part
by the U.S. Air Force Office of Scientific Research.

The authors are with the Department of Electrical and Computer
Engineering, Syracuse University, Syracuse, NY 13210.
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mental importance in signal representation, system analysis, and
solution of physical problems.

Sinusoidal functions are, of course, not the only class of
possible basis functions. One other class that has received
considerable attention recently is the set of Walsh functions
[1]-[3]. Walsh functions are binary-valued periodic functions
which form a complete orthonormal set on the interval [0,1).
Because their pulse-like character is compatible with ihe opera-
tion of digital computers and processers, they have found many
important applications in such areas as pattern recognition,
signal and image processing, digital filtering, sequency multi-
plexing, interferometric spectroscopy, etc. [4]-[7]. Generalized
transform theories using Walsh functions as the kernels have
been developed (8], [9]. Pichler [10], [11] has considered the
formalism for the use of Walsh-Fourier transforms in linear
system theory. As the main advantage of using Walsh functions
lies in their binary character, and as continuous Walsh transforms
are difficult and cumbersome to evaluate, Cheng and Liu [12]
applied discrete Walsh transforms to the analysis of dyadic-
invariant linear systems. However, dyadic-invariant systems,
though mathematically and conceptually interesting, do not
correspond to ordinary real-world physical systems. In order for
Walsh functions and Walsh transforms to be more useful and
more effective in signal processing and other applications,
methods for their usage in analyzing nondyadic time-invariant

Copyright © 1976 by The Institute of Electrical and Electronics Engineers, Inc,

Printed in U.S.A. Annals No. 605EC006
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systems must be found. It is essential that the Walsh transforms
for time-shifted functions be related to those before the shift so
that important operations such as time-delay simulation,
convolution, and correlation can be properly dealt with.

This paper presents several time-shift theorems for Walsh
transforms of functions subject to nondyadic as well as dyadic
time displacements. Spectrum-conversion matrices are defined
and a relation between a function with an ordinary shift and that
with a dyadic shift is established. As a specific application, the
recursive formula relating the output to the input of a system
described by a general difference equation is obtained, and a
numerical example is included.

Time shifting in the Walsh domain was studied by Brown
[13], who made use of the Hadamard matrix instead of the
Walsh matrix. The emphasis in Brown’s work was mainly on
Walsh-domain applications of some signal-processing problems.
Solution of difference equations was not considered.

WALSH TRANSFORM OF TIME-SHIFTED FUNCTIONS

In this work we confine our attention to sampled time functions
and their discrete Walsh spectra. Sampled time functions are
represented by column vectors. Their discrete Walsh spectra in
the sequency domain, also represented by column vectors, are
obtained by premultiplication with a square Walsh matrix of the
proper order. Thus let f(i) denote the N x 1 (N = 2™) time
vector, then its Walsh spectrum or discrete Walsh transform,

FQ), is
F=Wr 1)

where W is the N x N Walsh matrix whose rows and columns
are Walsh vectors ordered in an increasing sequency, and hence
is different from the Hadamard matrix. The inverse relation
of (1) is

J=Wr=Llpmp )
N
The ith element of fcan be written in a summation form
1 N—-1
fG) = — F(OW(L,i). (€))
N 1=0

A shift of k units in £ will change the ith element to f(i — k),
or
N-1

Lk =fG-Ry = ¥ FOWGI-0 @
N 150

In matrix form, (4) leads to the sampled shifted function
| -
]—k = I—V(W-kﬁ) 3

where W_ « is the Walsh matrix W with its last k rows moved up
as the new first k rows and the original first N — k rows each
moved down & units. W_, can also be written as a square matrix
whose columns are the Walsh vectors with sequencies from 0 to
N — 1, each shifted by k units:

Wi = [P0, W_ (1), -+, W_ (), -, W_,(N = D). (6)
Let F_, be the Walsh spectrum of f_,; that is,
F—k = Wi—k- @)

Then, from (5), we have

F..,=—WW_F=B_F (8)

1
N
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where

Eﬂ=%Wﬁd=W”ﬁk ©9)

can be called the spectrum-conversion matrix for a k-unit shift,
which relates the Walsh spectrum of a sampled function shifted
(nondyadically) by & units to that of the sampled function before
the shift. Equation (8) can be stated in the form of a theorem.

Theorem |

If Fis the discrete Walsh transform of a sampled functicn f,
then the discrete Walsh transform of the sampled function
shited by k units, /_,, is F_, = B_,F, where B_, = W ~'W_,.

For convenience, let A be the spectrum-conversion matrix for
a 1-unit shift; that is,

A=B , =W-W_,. (10)

We may write

A=W-"W_ W-"W)=W-\W_,W-"W

= W“i_‘W (1)
where
000 1
1 00 0
_ D -2 _101 e 0
I,=W_ W= . Ol ; (12)
0 10

is a unit-shift permutation matrix which is an identity matrix
with the last row moved up as the new first row and all other
rows shifted down one unit. It is clear that I_, raised to the kth
power will effect a k-unit shift. Hence,

=L =W 13)
and, from (9), we have

B,=W-W_,=W'W. W W

=W-ip_w
=W L W)W-I_W)...W-1I_,W)
= 4% (14)

Equation (14) enables us to state the following theorem.

Theorem 2

The spectrum-conversion matrix for a k-unit shift is equal to
the kth power of the spectrum-conversion matrix for a I-unit
shift.

We now illustrate the use of the spectrum-conversion matrix
for finding the Walsh transform of a shifted sampled time func-
tion by an example.

Example 1: A sampled time function is represented by the
column vector

Qi

fa = as)

——w AN WD —

U —




Determine the Walsh transform of the shifted time function
fG = 1.

Solution: We can find the desired discrete Walsh transform
F_, in two ways.

a)By F_, = WJ_,
F-1=W]-1
1 1 1 1 1 1 1 1} [1]
) (R 1 1 -1 -1 =1 -1l
1 1 -1 -1 -1 -1 1 1| |4
| 1 -1 -1 1 1 -1 —-1}||s5
1 -1 -1 1 1 -1 -1 1l ]2
1 -1 -1 1 -1 1 1 -1} )4
| 1 =1 -1 1 -1 1|3
It =1 % =0 % =) % =R}
[ 21
1
-9
—5
=131 (16)
5
=1
[ -1

b) By F_, = AF, where A is obtained from (11) and F = Wf

P, = iF
't o o 0 o ©° o 0O[2
¢ 3 32 0 0 -3 % o1 3
¢ -4 & @& ¢ % F ok
ke o0 o @ L W @ off s
“lo o o -t o ¢ o wo)|-5
¢ ~3 -3 0 0 - % wofl=7
0 =~} 3 0 0 =fF =% @f1=i
{0000000—1_1_
: ap
1
-9
s
=231 an
5
-
-1,

Of course the results in (16) and (17) are the same. Comparing
the two column vectors in (17), it is obvious that F_, cannot be
obtained from F by a simple rotation of elements.

WALSH TRANSFORM OF DYADICALLY SHIFTED FUNCTIONS

From (1), the /th element of F can be written in a summation
form

N-1
F() = ';) W(Li)f(i). (18)

The Ith element of the Walsh transform of f dyadically shifted
by J units is

1
" WL @ j)

5

Fg,(1)
W, i ® )f3G)

(19)

1
WD fOW,J).

=0

Ir a matrix form, (19) leads to
Fg, = CWJ
- &F

where C; is a diagonal square matrix with elements w(l),
l=0,1,---, N — 1in the diagonal

WG, N - 1)

(20)

W(,0)
2 - w(1)

O

Analogously to B_, in (8), C ', is the spectrum-conversion matrix
for a j-unit dyadic shift, which relates the Walsh transform of a
sampled function shifted dyadically by j units to that of the
sampled function before the shift.

@1

Theorem 3

If Fis the discrete Walsh transform of a sampled function £,
then the discrete Walsh transform of the sampled function
shifted dyadically by j units, fg;, is Fg; = C;F, where Cisa
diagonal matrix with elements W(jl), ! = 0,1,---, N — 1 in the
diagonal. i~

It is clear that the matrix C, possesses properties similar to
those of Walsh functions. In particular,

CiC = Cio
and there does not appear to be a simple way to derive c J
from C,.

Example 2: For the sampled time function f(i) given in (15)
find the Walsh transform of the dyadically shifted time function
Jia 1. - 35

Solution: We can obtain Fg, either from W/g, or from C,F.

a) From W/fg,. We first derive f(i ® 1) = fg, from the given
f@) in (15)

(22)

4]

fel = (23)

—— W N

With (23) we find
F B = ern

R S (RS R B R
I 1 1 =1 =1 =1 =i
i =1 =1 =1 =1 1 #
1 =1 =1 1 1 =1 =1
-1 1 1 -1 -1 1
-1 1 =1 1 1 -1
-1t 1 -1 =1 1 -1 1
-1 1 =1 1 -1 1 -1

f 21

=4
—
itinl

— et bt bt b bt e
|
—
= s AN

= . (24)

&
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b) From C,F. Here we need to know F = W/ which has been
found as the first column matrix in (17). We have

¢\F
1 1121

1 3
1 -7

: ! Ol
-1 -5
=1 ~1

O = -1

=1y [ 1]

FQ!

[ 21]

= (2%

L]
where a is obtained from (21).

RELATIONS BETWEEN DYADIC SHIFT AND ORDINARY SHIFT

By combining (8) and (20), a relation between the Walsh
spectrum of a dyadically shifted function and that of a non-
dyadically shifted function can be easily established

Fgu = DF_, (26)

where

D,=GCB ,'=CAa* @7

The inverse Walsh transform of (26) then relates a dyadically
shifted sampled function with the sampled function shifted in the
conventional manner by the same number of units

fek = W_lﬁkwf—k' (28)

Equations (26) and (28) will prove to be useful in Walsh trans-
form analysis of linear systems. The inverse relation of (28)
follows directly:

Jor = WD, Wr,,. - (29)

SOLUTION OF DIFFERENCE EQUATIONS

With the aid of theorems 1 and 2, we can determine the
solution of a difference equation by Walsh transformation in a
straightforward manner. Moreover, we can obtain the recursive

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, MAY 1976

formula of the system governed by the difference equation. Both
procedures are illustrated in the following example.

Example 3
Solve the following difference equation:

2¥(n — 2) + Sy(n — 1) + 2y(n) = x(n). (30)

Solution: a) To solve (30), we write it in vector form using
column vectors to represent discrete sampled functions

P S SRS 31
If ¥ and X denote the discrete Walsh transforms of 7 and %,

respectively, then the Walsh transformation of (31) yields, in
view of theorems 1 and 2,

(4% + 54 + 2hY = x (32)
where 4 has been given in (11). Consequently,
Y =Q4a*+54+2)"'X=HX (33)
with

H= (4% + 54 + 2! (34)

which is effectively the transfer function in the sequency domain.
The solution of the difference equation is then

j=W-'y =W-'HX
=W-'gWx. (35)
b) To obtain a recursive formula in the following form
Wn) = agx(n) + ayx(n — 1) + -+ + ay_,x(n — N + 1) (36)
where N = 2™ and the coefficients aq,a,, - - -,ay are to be found,
we observe that it is tantamount to writing the transfer function
Hin (34) as
H=a)+ a4+ - +ay_ A" 37
since the Walsh transformation of (36) should lead to (33). Pre-
and postmultiplying (37) by W and W ', respectively, we
obtain, by virtue of (11),
Wﬁﬁi'l =aoi+ alt_l +~-'+a‘\-_,i_(~_,,. (38)
The coefficients ag,a,,- - -,ay can be determined easily from (38)
for any given H by inspection.

For the present example, A has been given in (17) for N = 8.
From (34), we have

0111 0 0 0 0 0 o 0
0 0029 -0029 0 0 0147 —-0147 0
0 0029 0029 0 0 -0147 0147 0
= | o 0 0 0 -0200 0 0o 0
H=1 o 0 0 0200 0 0 0 0 (9
0 -0147 0147 0 0 -0265 —0265 0
0 0147 0147 0 0 0265 —-0265 0
| o 0 0 0 0 0 0 =

VIR
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Pre- and postmultiplying A in (39) by W and W ~, respectively,and observing (38), we obtain
( -0.170 0.336 -0.170 0.089 -0.052 0.042 -0.052 0.089
0.089 -0.170 0.336 -0.170 0.089 -—0.052 0.042 -0.052
~0.052 0.089 -0.170 0.336 -0.170 0.089 -0.052 0.042
WAEW - = 0.042 -0.052 0.089 -0.170 0.336 -0.170 0.089 —0.052
-0.052 0.042 -0.052 0.089 -0.170 0.336 —-0.170 0.089
0.089 -0.052 0.042 -0.052 0.089 -0.170 0.336 -0.170
-0.170 0.089 -0.052 0.042 -0.052 0.089 -0.170 0.336
L 0.336 -0.170 0.089 -0.052 0.042 -0.052 0.089 -0.1 70j
= —0.170] + 0.089]_, — 0.052]_, + 0.042]_, — 0.052]_,
+ 0.0891_5 — 0.1701_4 + 0.3361_, (40)

which is in the form of (38). We can then write H in (34) in the
form of (37)

H = -0.1707 + 0.0894 — 0.05242 + 0.04243
— 0.0524* + 0.0894° — 0.1704° + 0.33647. (41)

Since ¥ = HX, as defined in (33), we have the following recur-
sive formula for the given system:

§ = ~ 0.170% + 0.089%_, — 0.052%_, + 0.042%_,

- 0.052%_, + 0.089x_5 — 0.170%_, + 0.336x_,. (42)

Equation (42) expresses the output j as a linear combination of
the input x shifted by various amounts. It would be easy to
devise a hardware implementation of (42) as the solution of the

difference equation given in (31).

CONCLUSION

Time-shift theorems for Walsh transforms of functions
subject to nondyadic as well as dyadic time displacements have
been presented. Spectrum-conversion matrices have been
defined and a relation between a function with an ordinary shift
and that with a dyadic shift has been established. Methods for

solving difference equations by Walsh transformation have been
shown.
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An Algorithm for Sequency Ordering of Hadamard
Functions

DAVID K. CHENG AND JAMES J. LIU

Abstract—A simple algorithm is developed for obtaining the
sequency vector of high-order Hadamard transform matrices
without the need for converting the order of individual Hadamard
functions to sequency.

Index Terms—Hadamard functions, sequency (ordering), Walsh
functions.

Hadamard functions [1], like Walsh functions (2], are binary-valued
functions which form a complete orthonormal set on [0,1). However,
unlike Walsh functions, the order h of a Hadamard function H(h.t) is
not equal to its sequency, which is defined as the number of zero crossings
in the unit interval. It is known that the sequency of a Hadamard function
can be determined by finding the inverse Gray code of the bit-reverse of
the binary representation of its order [3], [4]. Concisely, if the binary form
of his

(h), = (b, b, s+~ buby), (1

then its bit-reverse is
(), = (biby+veby_sb,)). (2
The inverse Gray code of (h), in (2) is
(w)s = (Ciea=+«Crs€ny) (3)
with
¢ =¥ b, (4)

where ¥ denotes a dyadic or logical summation. (w). is the binary form
of the sequency of H(h,t). _

The Hadamard matrix H, transforms a set of N = 2" sampled data
in the time domain to a discrete set of N values in the sequency domain.
The hth row of H,, represents the values of the Hadamard function H(h,t)
where h varies from 0 to N — 1. The use of Hadamard transformation is
convenient because of the ease of generation of a Hadamard matrix of
an arbitrary order from the basic Hadamard matrix

5 1 1
H = [ ] 5
1 1 =1 (5)
by the following recursive formula:
ﬁn,0nl=ﬁnl@ﬁ"l (6)

where ® denotes a Kronecker product [3|-(5]. In particular, for n = 3, the
8 X 8 Hadamard matrix and the sequency ordering of its rows are, re-
spectively,

Manuscript received July 31, 1975; revised December 29, 1975 and April 26,
1976. 3
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Hadamard Transform Matrix  Sequency Vector
' S T R R N

j=1 1~=1 1~} 1} -1

1 1=1=1 1 1 =1 ~1
1-1-1 1 1-1-1 1 8, =
i1 1 1 1~-1~1=] -1
1
1
1

=} I=1=1 1=} 1
I-i-1~-1~1 1 1
=} =f ¥~ Lk 1 =]
where the sequency ordering is expressed as a column vector for conve-
nience. If the rows of the Hadamard matrix are rearranged in increasing
sequency, it becomes a Walsh matrix which finds important applications
in image processing and other areas. The question arises: what are the
sequency vectors of the 16 X 16 Hadamard matrix and of 32 X 32 and
higher order Hadamard matrices? The answer to this question is not
obvious and the bit-reverse inverse Gray code procedure applied to each
row of the Hadamard matrix is tedious. In the following we develop an
algorithm for obtaining the entire sequency vector by inspection.
Assertion: Let S, - be the sequency vector for the 27 ' x 27!
Hadamard matrix:
F('n
)

DN D= WO

S, = (R)
L{'g:. -
Then the sequency vector S, for the 27 X 2" Hadamard matrix is
rd,
T d\
S, = (9)
d -
where
dsy = ¢ (10}
doksr = (2" = 1) =, k=01,-+2"1=1, (11

This assertion can be expressed more concisely as S, (2k) = S, (k) and
S, 2k +1)=(2" = 1) =S, 1(k).

Proof: We shall prove the two recursive formulas (10) and (11} sep-
arately.

i) d_n;_ =cx

Let the binary representation of the sequency order k of S, | be

(k) =a,—1a,-,++-asx); (12)
then'its bit-reverse (k). is
(k), = (ayas++~a,-sa,-) (13)

From (14) the binary representation of sequency order 2k in S, is seen
to be

(2k), = (a, -1a, - +++asa,0) (14)
whose bit-reverse is
(2k), = (D@2 -+« @y —22n=1) (15)

It is evident that the inverse Gray code of (2&). in (15) is numerically the
same as that of (k), in (13). Hence, d.; = ci.
W) doks) = (2" = 1) = ¢x.
Because of (6), the above relation is equivalent to
doy + dogs; =2" = 1. (16)
From (10}, we can write immediatelv
(2k 4 1), = (@y-1@y-2++-aa,1) (17
and
2k + 1), =(layas+++a,-2a,-y) (18)

Let (Olyly«e-l,««elyy) and (1 ls«-1 -1, be, respecti. >
inverse Gray code of (2k). in (15) and (2k + 1), in (18). We have. trc a
(4),

Copyright © 1977 by The Institute of Electrical and Electronics Engineers, Inc.
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[=0@a, ®a.®---®a, =12 .0 -1 (RR%)] !
)
and
l=1®a@®a.®---®a, 1=12-..n-1 (20)

where @ denotes dyadic or logical addition. It is obvious from t19) and i
(20) that

L+l=1 (21)
Hence,
Ollsee el + LT 21, )
=11 =27 (22) p

and (16) follows directly. The proof of our assertion is now compiete
An algorithm based on recursive formulas (10) and (11) can be devised
to generate S, and S, . In order to find S, and S, knowing S (in (7). we
note that, for the 16 X 16 Hadamard matrix,n = 4and 2" = 1 = 15. The
transpose of S, can be written down i diately by inspection:

S{=101578312411114692135 10]. (23)

Similarly, for the 32 X 32 Hadamard matrix,n =5, 2" — 1 = 31, and the
transpose of the sequency vector S; is

E'.=[0 311516 7 24 8 23 3 28 12 19 4 27 11 20
130 1417625922229 13185 26 10 21). (24)

Each number in (23) and (24) represents the sequency of the corre-
sponding Hadamard function in the Hadamard matrix.
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A Generalized Orthogonal Transformation Matrix
DAVID K. CHENG anp JAMES J. LIU

Abstract— A procedure is described for generating a two-
parameter orthogonal transformation matrix which reduces to the
Fourier and Hadamard transformation matrices under special condi-
tions. This generalized transformation matrix is particularly useful
for multidimensional signal processing on a real-time basis because it
preserves a proper relationship in the transform domain.

Index Terms- Fourier transform, Hadamard transform, ortho-
gonal transform, raster scan, signal processing.
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INTRODUCTION

A procedure frequently used in two-dimensional image proces-
sing 1s to scan the image sequentiaily in time (raster scan), con-
verting 1t nto a one-dimensional digital signal and then
processing it in blocks in the transform domain [1], [2]. The scan-
ning process, in effect, transmits a two-dimensional matrix in the
form of a one-dimensional column matrix (vector). For example,
the matnx signal or image

dy d; ay
X=1b by by]. (1)

i € €3 €

would be scanned and transmitted as v whose transposition, X', is

"3]< ()

However, this conversion alters the relative positions of the ele-
ments, and the autocorrelation of x [or of \" in (2)] is obviously
not the same as that of ¥ in (1). It is seen that, in %, b, is close to a,
and ¢, whereas, in X or X', b, is quite far from a, and ¢, but is now
close to a;. Hence, the scanning process changes the character of
the original image, and processing in the transform domain after
scanning may not yield the desired results.

This correspondence introduces a two-parameter generalized
transformation matrix which reduces to the Fourier and Hada-
mard transformation matrices under special conditions. It is
structured on the m-ary number system using m-adic (modulo m)
operations. The generalized matnix can be generated from a basic
core matrix in a relatively simple manner. It will be shown that the
| new transformation matrix with appropriate parameters will
preserve the proper relationship in the transform domain before
and after scanning and that m-adic operations based on the m-ary
number system are inherently relevant in the processing of m x m
matrix signals. Ahmed et al. [3] discussed the generation of a
family of discrete orthogonal transforms for a given periodic data
sequence. Their emphasis was in factoring these transform
matrices into a product of sparse matrices and was not concerned
with preserving the character of the scanned image.

} “=[a, a; ay by by by ¢; c;

PRELIMINARIES
Consider a simple 4 x 4 matrix signal

z 01 3 4

. ¥ 239

k= 3
2 4 1% @)
: I B

Its two-dimensional discrete Fourier transform, X . is easily ob-
tained [4], [5] We have

31 1 -1 1
24 —-6+4jI1 2-3 2-j

X = '5 = 4
p=Firsh, =[] b’ o iy (4)
2—-j 24 2443 6 - jll
where lhe‘4 x 4 Fourier transformation matrix F, is

| 1 i 1
| . 1 Jj =1 +j 5
; U =8 ' al ©)
| 1 4 | J
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When raster scan is used to convert ¥ in (3) to a one-dimensional
16 x 1 column vector x, a 16 x 16 transformation matrix F,, is
conventionally used to obtain its Fourier transform X ;. To save
space, we write

T
[31, 0058 — 2935, —j3.828, —1.141 + j1.539,

1, 2555+ /1261, —j1.828, — 1.473 + j0.136,

~1, —1473 - j0.136, j1.828, 2255 — j12.6l,
I, — 1141 — j1.539, 3828, 0058 + j2935), (6)
where
1 1 1
l e;ns ?"'4 . e/]SnH
F—M_ 1 eind ein? o157 (7)
i e/l:Sws ‘)Jlﬁnd e;zz!ini
and
=l 33 4 1.2 3 92 41 13 %0 3
(8)

Obviously, X' in (6), when rearranged in a two-dimensional form.,
is not the same as X, in (4). We seek a new orthogonal transform
matrix which will alleviate this discrepancy

THE CORE MATRIX

In general, a two-dimensional image signal X may comprise
m x m elements; that is, there may be m rows each containing m
elements. Raster scanning makes the first element of the second
row (which is spatially close to the first element of the first row)
the (m + 1)th element. Conversely, the reconstruction of an image
from a one-dimensional digital signal puts the (m + 1)th element
at the head of the second row which is close to the first element of
the first row. This suggests a similarity with the structure of an
m-ary number system.

We define an m x m basic orthogonal transformation matrix as
follows:

1 1 | 1

~j2nm A m , Hm-= 112z m

I ¢ e ¢

Gul - 1 P jén m ¢ JBnm e Jm lidnm
1 Jim- 12nm y Mm = 1)m - 1) 2nm
1 e ¢

)

G,y is an m-ary matrix of the first order and it is easy to verify
that (on a matrix denotes the transpose complex conjugate, or
adjoint, of the matrix)

G 1 Ghy =ml,

where T'is an m x m identity matrix. We shall designate the ortho-
gonal G,, , as the core matrix. We note here that m is not restricted
to be an integral power of 2

(10)

THE GENERALIZED TRANSFORMATION MATRIX

The core matrix G, , may be extended to higher orders by
Kronecker multiplication (4], [6]:

Gus=Gun-1 ® Gu,s, (11)
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where G, , is an m-ary matrix of the nth order. It has a dimension
m" x m" and is also orthogonal. We note that G, ,(n = 1) is a
Fourier matrix and that Cz.,,(m= 2) is a Hadamard matrix.
Hence, G,., may be called a generalized transformation matrix
which reduces to Fourier and Hadamard matrices for particular
values of the parameters m and n. It is important to observe that,
in general,

G.,x_, = "-,,.z * G,,,_z (12)
and
GZ'.I = Gl.k = ﬁzh- (13)

where A is the Hadamard matrix of the 2*th order [6)

For the 4 x 4 matrix signal in (3), we transform it by G ,. Since
G, is the same as F, in (5). we obtain the same result in the
transform domain; that is, X 54 1%G..,, which equals the X,
in (4). With raster scan, the resu]tmg X should be transformed by
the 16 x 16 matrix G, 2t

24.1 (_-;J.l gm g-t.x
" A . B =1 251 _j(Zé.l =Gy, JGa4
G-t.l = G-A,l ® G4,l (-;4.1 By (-;4'1 Ga,l _(-;-4‘1

Gy jGey = Ga.l —JjGa

(14)

It 1s readily shown that

BL f =1, % 2%} =64jil, 2=5, 2=}
S~1, =3, =1, 2-—j 2+j 2+B, -6-ji]
(15)

which is the same cs the one-dimensional scanned version of X or
of X, in (4). The proper relationship in the transform domain for
the two-dimensional signal is therefore preserved for the one-
dimensional signal after scanning.

CORRELATION FUNCTIONS

We have seen from (11) that a generalized transformation
matrix of a high order can be generated from the core matrix by
Kronecker multiplication. The core matrix is basically built on an
m-ary number system. The propriety of using m-adic arithmetic in
dealing with m x m two-dimensional images can be further
demonstrated by considering the correlation functions.

The (i), iy)th element of the cross-correlation matrix of two
m x m signals ¥ and y can be written as

Roliniz)= 3 % x(ih @ ji iz ® j;)
J1=0 j2=0
0<iyiz<m-—1

0<jijo<m—1 )

Y*Us ja):
where » denotes complex conjugate. The symbol @ represents an
m-adic (or modulo m with no carry) addition. Raster scanning
converts the two-dimensional m x m matrices ¥ and y into one-
dimensional m? x 1 vectors X and y. For example, the (i, i;)th

element in X will appear as the ith element in X, where
i=iym+ iy, OSil‘l'sz—l. (I?)

R.(iy, i) in (16) therefore can be rewritten as

149
R, (i) = ~£l -Zl i @ jim + (iz @ j2)} y*(am + Jj2)
J1=0 j2=0
=73 i @ 1) 0 (18)

which is exactly the element in the one-dimensional R,, corre-
sponding to the (iy, iz)th element in the two-dimensional R,,
shown in (16).

The second-order generalized transformation matrix G,, , must
be used on R,, to obtain the m* x 1 power-density vector S,,:

S=GLR =X, T* (19)

where X, - V% is a termwise multiplication [7]. § in (19) rear-
ranged as m x m matrix will be the same as

$,=G.1R,,G.,. (20)

The same conclusion cannot be drawn if G, , and G, , are
replaced by F,. and F,, respectively. As a consequence, a
distorted power-density spectrum would be obtained if the con-
ventional Fourier or Hadamard transformation matrix is used
with a scanned signal.

For the given 4 x 4 matrix signal % in (3), the autocorrelation
matrix R, is, from (16),

85 60 44 60
B 58 40 S8 78
40 62 80 62
58 78 58 40

(21)

and the power-density matrix is, from (20),

91 1 1 1
s'x 5 157 13 S (22)
25 1 9 1
3 5 13 157

Inspection of (15) and (22) reveals immediately that the relation in
(19) is satisfied.

If quadri-adic addition is not used, the transposed autocorrela-
tion vector of the scanned x would be

R = [85, 54, 46, 78, 58, 40, 74, 68,
40, 68, 74, 40, 58, 78, 46, 54], (23)

which bears no simple relation with R, in (21). Furthermore, the
discrete Fourier transform of R} in (23), after rearrangement, is

961 8.617 14.66 3.668
1 2187 3343 1655
1 3668 1466 8617

Compared with $, in (22), § in (24) s obviously incorrect; so also
will be the results of subsequent steps of signal processing. On the
other hand, when the generalized matrix G, ,, derived in accor-
dance with (14), is used to transform the scanned version, R,, of
R, in (21), we obtain

S.=G4,R,, (25)

which, when rearranged in a two-dimensional form, restores the
power-density matrix S, in (22)
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Noise-Error Determination of Combinational Circuits
by Walsh Functions

A. UDAYA SHANKAR AND DAVID K. CHENG, FELLOW, IEEE

Abstract—The stochastic behavior of digital combinational circuits is
analyzed by the use of Walsh functions. An n-input Boolean function is
represented as a Walsh series and the error caused by noise is measured
in terms of a distance which is the fraction of the time that the system
output due to noise-corrupted signal differs from that due to signal
alone. It is shown that the error can be expressed as the sum of two
parts: one part depends only on noise statistics, and the other on both
signal and noise. Some interesting properties of both parts are discussed
and typical examples are given.

Key Words: Noise error, digital combinational circuits, Walsh
functions.

I. INTRODUCTION
HE OUTPUT behavior of linear (and some nonlinear)
analog systems in response to stochastic inputs can be
determined in a large number of cases. However, no such

Manuscript received June 5, 1978; revised October 9, 1978. This
work was supported in part by the Air Force Office of Scientific Re-
search, Air Force Systems Command, USAF undes Grant AFOSR-75-
2809.

The authors are with the Department of Electrical and Computer
Engineering, Syracuse University, Syracuse, NY. (315) 423-4395.

comparable facility exists for digital systems, such as those
employing threshold-type devices and discrete-valued wave-
forms. Given input statistics and digital-system transformations,
it is, in general, a formidable task to obtain the output statis-
tics. An obvious reason for this difficulty is that digital-device
(such as a transistor-transistor logic (TTL) gate) models are not
linear RLC models and cannot be handled by the usual linear
algebra and calculus. Logical algebra and an associated calculus
that is digital in nature are required [1]. In this connection,
Walsh functions have been found to be relevant (2] -[5]. This
paper expresses an n-input Boolean function as a Walsh series
and defines the error at the output of a combinational circuit
caused by noise as the distance between the responses to the
signal and to the noise-corrupted signal inputs. The use of
Walsh functions appears natural here and does, in fact, facili-
tate the computation of the system error [6], [7].

It will be shown that the error can be obtained as the sum
of two parts: one part depends on noise statistics only, and the
other depends on the characteristics of both signal and noise.
For independent and identically distributed noise processes,

0018-9375/79/0500-0146$00.75 © 1979 IEEE
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the first part is invariant over each of certain equivalence
classes of Boolean functions. Under certain conditions of noise
and signal-component processes, the system error is expressible
as a polynomial function of the expected values of signal and
of noise. Some interesting properties of the error polynomial
will be discussed. The Boolean functions of two combinational
circuits are studied, and the system errors are computed and
plotted for various statistics of signal and noise.

II. PRELIMINARY CONSIDERATIONS

Any n-input combinational circuit S can be represented by
a Boolean function that maps every binary n-tuple to either O
or 1. Let the set of all binary n-tuples be denoted by V,,. Then

Vn b {(xn-l» xn"2' Y xO):xie {0, l}v
for0<i<n}. (1)

Since an n-tuple can be considered as a vector, it is convenient
to denote (x,_;, x,—2, =, Xo) by X. Let x stand for the
integer whose binary representation is X; we have

n—1
X = E ijj. (2)
j=0

Equation {?) establishes an equivalence between {0, 1, 2, -,
2" — 1}, denoted by D,, and ¥, in (1). Any function or
operation defined on V), is thus also defined on D,,. Fig. 1
shows a schematic diagram of an n-input combinational circuit
with a single binary output.

Dyadic operations are fundamental to Walsh functions and
their applications. Dyadic addition, denoted by @ (on V,,, and
hence on D,,), is defined as follows. For any X and y in V,,,

29; = (xn—l ®Yn—1,Xn—2 ®Yn—2, " Xo ® Yo YE Vn

3
where
0e0=101=0 (3a)
and
Oel=1e0=1. (3b)

In fact, (V,, ®) forms the dyadic group for which Walsh func-
tions are the character functions [8].

For an input X(r) = {({X,—1(8), Xn—_2(2), =, Xo(2)): for
t €T, X(t) € {0, 1}, for 0 < i < n}, where each X(t) is a
binary stochastic process, the output of a given combinational
circuit S is also a binary stochastic plocess__{S(X(t)) € {0, 1}:
t € T}. We define a distance Dg[X(r), Y(t)] between the
responses to two inputs X(f) and Y(r) as the fraction of the
time that the output S(X()) differs from S(Y(2)). If X(t) is the
signal input process in the absence of noise and Xy(r) =
(XN n=1(0), Xy n—2(0), ", Xn o(t)) € Vi t € T} a noise-
corrupted input process, then, in general, S(X(7)) # S(Xn(2))
and we write the error at the output due to noise at the input
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BINARY
VECTOR INPUT

Yo =1  N-INPUT
X, o—{ COMBINATIONAL
Xy-, = CIRCUIT, S

XCVNORDN

Fig. 1. Schematic diagram of an n-input combinational circuit.

BINARY OUTPUT
S(x) € 10,1}

as

ks = Dg[ X (1), X n(0)). 4)

A more precise definition for £g will be given later.

We assume that the noise is also a binary process N(z) =
{(Np—1(8), Nu—3(2), =, No(t)) € V,,: t € T} and is added to
X(r) dyadically to yield

Xn@) =X(@) 2 N@). (5)

The dyadic addition in (5) is appropriate inasmuch as a com-
bined input digit is in error if, and only if, the corresponding
noise digit is 1. Consequently, Walsh functions can be used to
advantage in noise-error determination.

Walsh functions, denoted by Wal (+), form an orthogonal
basis on V,, [8], [9]. Fori € D, and X € V,,, the Hadamard-
ordered Walsh functions [10], [11], are

n—1
T ijxj

Wal (i, x) = (—1)/=° (6)

where the notation conforms with that in (2). Obviously,
Wal (i, x) € {1, —1}. The following properties can be readily
verified 8], [12]:

a) Wal (i, x) = Wal (x, i) 7
b) 2 Wal G, x)Wal (j, ¥) = 27, ®)
XEV,

where 8;; is the Kronecker delta

¢) Wal (i, ¥ @ 7) = Wal (i, ¥) Wal G, 7). ©)

III. EQUIVALENT BOOLEAN FUNCTIONS AND THEIR
WALSH REPRESENTATION

Because Walsh functions form an orthogonal basis on V,,
we can represent any Boolean function as a Walsh series. We
write, for any n-input Boolean function S,

S(X)= D, b;Wal (i, X) (10)
i€ED,
where
bi=2"" ), S(X)Wal (i, X). (11
€V,

v o

sy

T

i N i i i i A Lo -
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Two Boolean functions $,(x) and S,(x) on ¥, are said to be
equivalent [13] if there is a sequence of permutations and
complementations of some of the variables (x,_y, x,_o, ",
Xo) to produce {¥p_1, Yn—2, " Yo such that, for every
XEV,,

ford € {0, 1}.

$1(¥)@S,(X)=d, (12)

A. Assertion I (See Appendix I for Proof)

Let an n-input Boolean function S(x) as represented in (10)
be transformed under an equivalence operation (permutations
or complementations) to

OF)= 2 ¢;Wal(i%). (13)
i€D,
a) If Q(x) is the complement of S(x), then
1= bo, fori=0
U=V b, forieD,— {0} ={1,2 = 22 —1}.
(14)
b) If out of X € V,, the inputs Xjys Xjgs s x,«m,where
m < n, are complemented, then
q; =b; Wal (i, h) (15)
where
m s
h= 3 2% (15a)
k=1
¢) If xo and x5 (0 < a, § <n) are interchanged, then
b;, for those i where i, = ig
L . L, (16)
b ragqb for those i where iy, # ig.

This assertion will be used to prove that the part of the error
which depends only on noise statistics is invariant over com-
plementations in Boolean functions and over an interchange of
inputs under certain conditions.

IV. NOISE ERROR IN COMBINATIONAL CIRCUIT

We have defined previously a distance Dg[X(r), Y(1)]
between the responses of a combinational circuit S to the
inputs X(¢) and Y(r) in a qualitative manner. For stochastic
inputs over a discrete time domain T,

Dg[ X(1), Y(1)]

1
=E{—— Y [S(X(®)®S(Y(t)]

17
IT| &1 7

where Dg [ -, -] satisfies the following properties:
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a) Dg[X(1), Y(1)] = Dg[ Y(1), X(1)] 20 (18)
b) Dg[X(r), X(1)] =0 (19)
¢) Dg[X(1), Y(1)] <Ds[X(r), Z(r)]

+ Ds[2(1), Y(1)]. (20)

Combining (4), (i  and (10), we have the following Walsh
representation for the error £ at the output of the combina-
tional circuit S for signal X(r) corrupted by noise N(z).

1 o H
— 2| X bWaG X))
IT| (7

i€D,

t(s=E

(21

2
- X bWal, JT'N(:))] ‘

i€D,

where the identity @ ® b = (@ — b)2 fora, b €{0, 1} has been
used. The following relations hold:

E{[1—Wal G, N(t))]2} =2{1 —E[Wal G, N(t))]} (22)
which vanishes if i = 0; and
E{[1—Wal G, N(0))][1 — Wal (j, N(t))]} =0 (23)

if i or j = 0. By using (5), (22), and (23), we can put (21)in
the following form:

£s = Es(V) + Es(V, X) (24)
where
2
EV)=—— X X b21—E{Wal G, N@)}]  (25)

IT| (€7 icD,

which depends only on noise, and

1
BN=— 2 X X by

IT| ¢€r i#i:iicp,
E{[1—Wal (i, N(t))] * [1 —Wal (j, N(5)]

« Wal (i , X(1))} (26)

which depends on both signal and noise. Note that D,, may be
replaced by D, — {0}. Equations (24)~(26) are general results
for system errors.

Under the complementation operations in Assertion I: a),
b), which transform S to Q, equations (14) and (15) indicate
that q;2 = 5,2 for i # 0. Hence, (V) = £5(N). Furthermore,
using (16) and (25), we have

2
oM =—— X ¥ b2[1 —E{Wal G, N()}]

IT| (&7 ia=ig

2 2 s

IT) (€7 ig#ig

2
i

— E{Wal (i ® 22 @ 28, N(1))}]. 27
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Now, in view of (9), if No(r), Ng(t) are identically distributed
and independent from the other noise processes,

E{Wal[i®2* 268 N(1)]}

= E{Wal [i, N(1)]} + E{(—1)'aNaO*igNg®Oy  (9gy

Since exactly one out of {ig, ig} will be 1 if i # ig, and since
(—1)Nat® and (—1)V8® have the same mean, it follows from
(25) and (27) again that £4(N) = £g(N). Hence, we can make
the following assertion.

A. Assertion II

For a given combinational circuit S, the noise-dependent
error term £g(N) is 1) invariant under a complementation of
its Boolean function and/or a complementation of any subset
of the inputs, and 2) invariant under an interchange of inputs
X4(r) and xg(¢) if the noise processes {Ny(t), Ng(¢)} are inde-
pendent of {N,(t): i # a, §} and the probabilities of N,(¢) = 1
and of Ny(¢) = 1 are equal.

V. ERROR FOR INDEPENDENT AND
STATIONARY INPUTS

The noise-error formulas in (25) and (26) are quite involved,
and it is difficult to interpret the dependence of £g(N) and
£s(N, X) on the statistics of the noise and the signal. We shall
now show that, when the signal and noise are independent and
stationary processes, each identically distributed, §(g(N) is
expressible as a polynomial in the expected value of the noise
and £g(N, X) as a polynomial in the expected values of the
signal and the noise. Preparatory to the substantiation of this
statement, we first need to establish a lemma.

A. Lemma (See Appendix Il for Proof)

If X; € {0, 1} are independent and identically distributed
binary random variables (0 <j <n) with Prob (X; = 1) = é,
then

E{Wal (i, X)} = (1 — 28 x)Him® (29)
where Hm(i) denotes the Hamming weight of i:

n—1

Hm(i)= Y i (30)

j=0

Under the assumption that the signal and noise are inde-
pendent and stationary processes, each identically distributed,
we obtain the following important simplified results from (25)
and (26) immediately, with the aid of (29).

B. Assertion [11

If {Xi(t). N(t): 0 <i < n} are independent and stationary
with

Prob [Xi(1) =1] =E{X;} =6y (31)
and
Prob [Ni(t)= 1] = E{N;} =6y (32)
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then the component error expressions £g(NV) and £g(N, X) in
(25) and (26) for the Boolean function S represented in (10)
can be simplified, respectively, to

EsS(V)=2 ) b2[1—pyHm®)] (33)
i€ED,

and

Es(V, X) = E E b‘b).[] +pNHm(i0j)

i#j:1,JED,
— pyHm ) — p Hm )] p, Hm (%)) (34)
where
Px=1—284 (35)
and
py =1—20y (36)

and D, may be replaced by D,, — {0}. Note that £g(N) in (33)
is a polynomial in the expected value of the noise and that
£s(N, X) in (34) is a polynomial in the expected values of the
signal and the noise. Both are relatively simple to compute and
their sum can be plotted versus § 5 for different values of §
for a given combinational circuit.

VI. SPECIAL SITUATIONS

We now examine the behavior of the error for three special
situations; namely, A) the low-noise case, B) the case of
8 = 0.5, and C) the unbiased-signal case.

A. The Low-Noise Case: 6y <1

In such a case, we can use the approximation

PNk =(1—25p5)% =1 —2kby (37)
and write (33) and (34) as
Es(V) = 26 veo (38)
and
n
Es(N, X) =26y pl exPx* (39)

where, for 0 <k <n,

en= 22 bb[HmG)+Hm(j)—Hmie)). (40)
i,jED,
Hm(i®j)=k

Substituting (38) and (39) in (24), we have
n
ks =268 3, ewpx*. @1)
k=0

Hence, we can conclude from (41) that, in a low-noise situation,
the error &g increases approximately linearly with &, the
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constant of proportionality being a polynomial in py. This
conclusion is exhibited in Figs. 2(a) and 3(a). Note that &g is
independent of the signal if, and only if, e, = 0 for 0 <k <n.
B. The Case of 5 = 0.5

This is a case of very high noise and, from (36), py = 0. We
have

1 +pNHm(i~s/) __pNHm(i) _pNHm(j)

2, fori=j+#0
={1, fori#j#0 (42)
0, for i or j or both = 0.

By substitution of (42) in (34) and then combining with (33),
we obtain

Es = Es(V) + Es(NV, X) = D cppx® (43)
k=0

where

=2 2 b (=L (@4)
i€ep, {0

and

= X  bb, 1<k<n (45)
ijep,—{0}
Hm(i%j)=k

Hence, &g is a polynomial in px as in (41). &g is independent
of signal X(¢) if, and only if, ¢, =0 for | <k <n.

C. The Unbiased-Signal Case

In many situations the signal has no bias, or the environment
is not known; it would be reasonable to assume 6y = 0.5 or
px = 0. Hence £g(N, X) = 0 and

Es = (V) =2 2 b2[1—pyHm®], (46)
i€ED,

The error is then invariant over each equivalence class.

VII. NUMERICAL EXAMPLES AND ERROR CURVES

We shall now apply the method developed in the previous
sections to determine the error at the output of two combina-
tional circuits as a function of the expected values of the signal
and of the noise at the input. Both the signal and the noise-
component stochastic processes are assumed to be independent
and stationary, each being identically distributed. The error
£¢ will be calculated and plotted versus 6 5 for different values
of 6. Two sets of error curves (one set for a low-noise and
the other set for a high-noise situation) are presented for the
Boolean function of each combinational circuit.

A. Circuit 1A Three-Input Function: S(X) = xy'x x4 +
X9xy %o + X%,

For this Boolean function, S(x) = 1 forx € {2, 4,6, 7} and
the vector b, representing the coefficients b; (1 = 0, 1, -, 7) of

S =

S9p opop

VwWeuw e

10.00

5.00

.00 2.00 4.00 6.00 8.00 10.00
(X10-2) 8

(a)

10.00

7.50

»n
5.00

Minimally dependent on éx

2.50

(X10-1)

p.00

.00 2.00 Y. 00 6.00 .00 10.00
(X10-1) 5
N
(b)
Fig. 2. (a) Low-noise error curve for circuit 1. (b) High-noise error
curve for circuit 1.

the Walsh-series expansion in (10), is found by (11) to be

b=2"22 1 -1 0 -1 0 0 —1].

In order to examine the behavior of the error curves in both
the low-noise and the high-noise situations, the e, coefficients
in (40) and the ¢}, coefficients in (44) and (45) are computed.

eo = 0.75, e;=e3 =0, e =0.25
Co=0.50, Cy =C2=C3=0.

&g versus &\ curves are plotted in Figs. 2(a) and 2(b). It is seen
that, in the low-noise range, &g increases almost linearly with
8y and is dependent on 5y because e, is nonzero. In the
entire high-noise range, g depends minimally on §y and
becomes independent of 6y at 65 = 0.5, in agreement with
the ¢,'s being zero for k # 0. The error curves are monotoni-
cally increasing, and thus a maximum uncertainty (§ 5 = 0.5)
does not cause a maximum error. The compactness of both the
low-noise and the high-noise error curves is apparently due to
the sparseness of the vector b.

e ———

' ‘ . . ' " . —
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B. Circuit 2—A Four-Input Function S(X) =x3'x,'(x, ®x4) +
{x3 szkl,xol + (X3, +x3x2'}x1xo
Here,
S(x)=1forx€ {1,2,3,4,7,8,11}
the vector b is
B=2"417—-1 =133 k-1 -1 311 =l —I
-1 -1 =5}

and the e, and ¢, coefficients are

eo=1.250, e, =0.750, ey =0.250,
e3=—0250, e,=0

co=0492, ¢, =00312, ¢, =—00156,
€3 =—0.0312, ¢, =—0.0391.

£g versus 8, curves are plotted in Figs. 3(a) and 3(b). In the
low-noise range, £g increases almost linearly with 5. The
slope of the error curves decreases fairly linearly with increasing
8 x; hence, the low-noise error is upper-bounded by the § x =0
line. This linear dependence on 8 x results from the dominance
of e, over the other e,’s. The high-noise curves demonstrate
two phenomena: first, heavily biased signals (6x = 0.001,
0.01, 0.90, 0.99) suffer less error with greater noise above
8ny = 0.5; second, the value of 8, at which the maximum
error occurs increases with increasing 8. This complicated
behavior is a hallmark of the absence of, or having few, zero
Walsh coefficients (b;’s).

VIII. CONCLUSION

This paper presents a procedure for analyzing the stochastic
behavior of digital circuits by the use of Walsh functions. In
particular, the error at the output of a combinational circuit
caused by noise is studied by defining a distance measure
between the responses to the signal and to the noise-corrupted
signal. By restricting the noise to be dyadically additive, which
is perfectly reasonable, Walsh representation is used to obtain
the error in terms of the input statistics. It is shown that the
error can be expressed as the sum of two parts: one part
depends only on noise statistics, and the other on both signal
and noise. The former is invariant for equivalent Boolean func-
tions, if the noise processes are independent and identically
distributed. Under the more constrained condition of inde-
pendent and stationary noise and signal processes, each iden-
tically distributed, the error is a polynomial function of the
expected values of signal and of noise. In a low-noise situation,
the error increases linearly with the expected value of the
noise at the input. For unbiased signals, the error polynomial
is invariant over each equivalence class. These properties are
exhibited in two typical examples.

APPENDIX I

Proof of Assertion 1
a) By hypothesis,

O(%) = 1 — S(%).

(A1)
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0.9
o
o 4
©
§
o
=<8
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.00 2.00 4.00 6.00 8.00 10.00
(X10-1) 8
N
(b)
Fig. 3. (a) Low-noise error curve for circuit 2. (b) High-noise error

curve for circuit 2.

Using (10) and the fact that Wal (0, x) = 1, we have

O(%) = Wal (0, ¥)— 2, b; Wal (i, ¥)

i€D,
2z

=(1—bg)Wal (0, x)—
iep,—{o}

b, Wal (i, ). (A2)

Comparison of (A2) with (13) proves (14). |

b) Complementing the m inputs changes X to y =Xx @ h,
with h given by (15a), which implies 4;, = 1 for all k. As a
result,

0(x) =S(y) =S(x e h)

= Y b Wal(i,xeh)
i€ED,

= D, [b;Wal(, k)] Wal (i, X)

i€D,

(A3) |

from which (15) follows directly.
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¢) Interchanging x, and x4 changes X to y and

Q(F)=SF)= 2, b;Wal (i, y)

iq=ig

+ E b, Wal G, 7).
iq*ig

(c1) If iy = ig, Wal (i, ¥) = Wal (i, X). Thus q; = b;.

(c2) Ifig #1ig, then forj =i ® 2% ® 28, j, # j,.

(A4)

We have Wal G, 7) = Wal (j, ¥), and Wal (j, 7) = Wal G, ¥).

Thus,
U=, 50q08-

Equation (16) is therefore proved.

APPENDIX II
Proof of Lemma

We note from (6) that only those x;’s corresponding to
i; = 1 will have an effect on the value of Wal (i, X). If the X’s
are independent and identically distributed, any collection of
that many X;’s will suffice for probability calculations for

Wal (i, X). Thus

Prob [Wal (i, X) = 1]

e[S

i=1

X ,») is even]

Hm (i) Hm (i)
w=0 j=1

(w is even)

w=0
(w is even)

Hm (i) 1
- 8 (" prrasymo
w

Similarly,
Prob [Wal (i, X) =—1]

Hm (i)
= Prob [( p x,-)is odd]
j=1

Hm (i) {
= E (Hm(l)>5xw(] _5X)Hm(l)'—w'
w

w=1
(w is odd)

(A5)

(A6)
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Combining (AS) and (A6), we have

E[Wal (i, X)] = Prob [Wal (i, X)=1]

—Prob [Wal (i, X) = —1]

= SN Hm(i) w(l — m(i)—w
= wE-m ( 2 >(—5x) (1—8x)Hm
=(1—25,)Hm®D (A7)

which is (29), the lemma to be proved.

]

12]

3]

{4]

(5]

(61

(71

(8]

9]

(10]

(11]

(12]
[13]
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